How to Exhibit Toroidal Maps in Space

نویسندگان

  • Dan Archdeacon
  • C. Paul Bonnington
  • Joanna A. Ellis-Monaghan
چکیده

Steinitz’s Theorem states that a graph is the 1-skeleton of a convex polyhedron if and only if it is 3-connected and planar. The polyhedron is called a geometric realization of the embedded graph. Its faces are bounded by convex polygons whose points are coplanar. A map on the torus does not necessarily have such a geometric realization. In this paper, we relax the condition that faces are the convex hull of coplanar points. We require instead that the convex hull of the points on a face can be projected onto a plane so that the boundary of the convex hull of the projected points is the image of the boundary of the face. We also require that the interiors of the convex hulls of different faces do not intersect. Call this an exhibition of the map. A map is polyhedral if the intersection of any two closed faces is simply connected. Our main result is that every polyhedral toroidal map can be exhibited. As a corollary, every toroidal triangulation has a geometric realization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superstability of $m$-additive maps on complete non--Archimedean spaces

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

متن کامل

The Tropicalization of the Moduli Space of Curves

We show that the skeleton of the Deligne-MumfordKnudsen moduli stack of stable curves is naturally identified with the moduli space of extended tropical curves, and that this is compatible with the “naive” set-theoretic tropicalization map. The proof passes through general structure results on the skeleton of a toroidal Deligne-Mumford stack. Furthermore, we construct tautological forgetful, cl...

متن کامل

Classification of Irreducible integrable modules for toroidal Lie-algebras with finite dimensional weight spaces

The study of Maps (X,G), the group of polynomial maps of a complex algebraic variety X into a complex algebraic group G, and its representations is only well developed in the case that X is a complex torus C. In this case Maps (X,G) is a loop group and the corresponding Lie-algebra Maps (X, ◦ G) is the loop algebra C[t, t]⊗ ◦ G. Here the representation comes to life only after one replaces Maps...

متن کامل

Tessellation and Visibility Representations of Maps on the Torus

The model of the torus as a parallelogram in the plane with opposite sides identiied enables us to deene two families of parallel lines and to tessellate the torus, then to associate to each tessellation a toroidal map with an upward drawing. It is proved that a toroidal map has a tessellation representation if and only if its universal cover is 2-connected. Those graphs that admit such an embe...

متن کامل

Application of Multi-objective Optimization for Optimization of Half-toroidal Continuously Variable Transmission

Among different goals defined in vehicle design process, fuel consumption (FC) is one of the most important objectives, which significantly has taken into account lately, both by the customers and vehicle manufacturers. One of the significant parameters which impacts the vehicle FC is the efficiency of vehicle's power train. In this paper, a half-toroidal continuously variable transmission (CVT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2007